

Uncertainties in the early phase influencing the transition phase issues

Irene Korsakissok*, Wolfgang Raskob

*IRSN, France; Karlsruhe Institute of Technology (KIT)

CONFIDENCE Training course 13.05 - 15.05.2019, Trnava, Slovak Republic

Context

In case of an accidental release of radionuclides

- Atmospheric dispersion models are used to *forecast* the health and environmental impact
- A tool for decision making: countermeasures (evacuation, sheltering, stable iodine intake)
- A tool to reconstruct the contamination events combining simulation and measurements

Key uncertainties affecting the early phase

- 1. Meteorological uncertainties
- 2. Uncertainties related to source terms
- 3. Uncertainties related to models
- 4. Using meteorological measurements to reduce uncertainties

<image/> Market Norsakissok, I. Somskissok, J. So	<page-header><image/><image/><image/><image/><image/><image/><text><text><text><text><text><text><text></text></text></text></text></text></text></text></page-header>	<complex-block> </complex-block>

Case study: Borssele

Meteorological scenario

- Ensemble (KNMI), 10 members, 2,5 km resolution
- 72-hours forecast, 1-hour time step
- 11-13 January 2017: "Easy case" (established wind direction), rain

Short release scenario

- Duration 4 hours Release time 11 January at 12 UTC
- 8 radionuclides, no kinetics
- Representative of uncertainties in the pre-release phase

Long release scenario: ensemble (FASTNET)

- Duration 72 hours
- Extracted from a database built with ASTEC severe accident code
- Release time 11 January at 06 UTC without uncertainties
- Second major release = opening of the venting containment system¹⁰
- Aerosols are filtered for the second release
- Representative of model uncertainties (release phase)

Short release scenario

- Release time 11 January at 12 UTC +/- 6 hours
- Release height 50m +/- 50m
- Released quantity X [1/3, 3]

Radionuclide	Xe-133	I-131	I-132	Te-132	Cs-134	Cs-136	Cs-137	Ba-137m
Activity(Bq)	3.51E18	2.25E16	2.84E16	1.37E16	2.69E15	6.37E14	2.06E15	2.78E14

Dorticipont	Number of simulations	Source perturbations					
Participant		Release height	Release time	Released quantity			
IRSN	100 (Monte Carlo)	[0, 100m] uniform	[-6h, 6h] uniform	[1/3, 3] uniform			
BfS	150	[0m, 50m, 100m]	T0 + [-6h, -3h, 0h, +3h, +6h]				
MetOffice/ PHE	90	[50m]	T0 + [-6h, 0h, +6h]	[x1/3, x1, x3]			
EEAE	50	[50m]	T0 + [-6h, -3h, 0h, +3h, +6h]				
ΜΤΑ ΕΚ	150	[0m, 50m, 100m]	T0 + [-6h, -3h, 0h, +3h, +6h]				
RIVM	650	[0m, 25m, 50m, 75m, 100m]	[-6h, +6h] with a time step of 1 hour (13 steps)				
DTU	10	-	-	-			

onfidence

Short release scenario

Endpoints: consequences computed at T0+24h

- Ground deposition of ¹³⁷Cs and ¹³¹I
 - ▶ Post-Chernobyl reference level: 37 kBq/m² for ¹³⁷Cs
 - > Other levels: 10 kBq/m² for ¹³⁷Cs, ¹³¹I
- Effective dose and inhalation thyroid dose for 1-year old child 10, 50, 100 mSv

How to use ensemble results?

With source perturbations

- Maximum distance of threshold exceedance is lower
- Surface covered by low probabilities is larger

Short release: box plots

- Maximum distance from the source (km)
- For a threshold of 37 kBq/m² for the ¹³⁷Cs deposition

- Larger variability (boxes' size) with ST perturbations
- Inter-model variability not totally encompassed by the range of variation

Conclusions

Influence of source perturbations

- Importance of taking into account source perturbations
- Larger ensembles' spread
- More perturbations induce lower distance above a given threshold

Inter-model variability

- Less important when overall uncertainties are larger
- Some models or configurations may be more appropriate to the case
- Part of this variability may be taken into account
- An uncertainty assessment with only one model will always be partial

Uncertainty assessment

- Lower threshold induces higher distances / probability
- Surface above threshold (instead of distance) limits the effect of outliers
- Importance of choosing correctly the threshold and percentile

Uncertainties in an emergency context

Our knowledge of uncertainties will always be partial...

- Deep uncertainties, lack of information
- Have to tackle the main sources of uncertainties!
- Avoid false confidence in probabilistic results...

Ensemble results will be used by other modules

- Reducing the number of members: clustering techniques, adaptive sampling
- Model reduction: emulators, model assumptions
- Adaptation to the endpoint: domain size and resolution...

7 How to include uncertainties in output products for decision makers?

In the transition phase

Combine modelling and monitoring to obtain a "realistic" radiological picture

Thank you very much for your attention

Questions?

https://portal.iket.kit.edu/CONFIDENCE/